使用社交账号登陆

当前位置: 主页 > 前沿 > 天文 • 物理

自然晾干的毛巾为什么会变硬?这与结合水的特性有关

时间: 2020年04月21日 | 作者: Admin | 来源: 科研圈
日本花王公司和北海道大学进行的一项新研究表明,这一过程可能是因为结合水表现出了与普通水不同的独特氢键结合状态导致的。


image.png

自然干燥后的棉束变得僵硬,好像粘在一起(左图),而在洗衣机中通过强制排水和物理搅动(例如摇动)干燥的棉束保持柔韧性(右图)。图片来源:J.Surfact Deterg(2016),19,183


来源 北海道大学

编译  闫硕

编辑  魏潇


或许你在生活中经常碰到这种现象:洗好后经过自然晾干的纯棉毛巾会变得像纸板一样硬,大大降低了使用感。你可能会觉得这是干燥环境中的阳光或者空气在“作祟”,认为是它们带走了毛巾中的所有水分。实际上,当我们通过洗衣机物理搅拌强行除去纯棉毛巾中的水时,毛巾反而会展示出原始的柔韧性并再次出现蓬松感。


在专注于衣物清洁领域的日本花王公司的眼中,这可能不单单是一个“熟悉”的生活现象。近日,花王公司和北海道大学科研团队在《物理化学杂志》C刊上发表论文《原子力显微镜和原子力显微镜-红外光谱法直接观察棉表面的结合水》(Direct Observation of Bound Water on Cotton Surfaces by Atomic Force Microscopy and Atomic Force Microscopy–Infrared Spectroscopy),首次直接观察到了棉制品表面纤维间的结合水,为结合水导致单根纤维交联从而引发硬化的猜想提供了有力的证据。


研究还发现,结合水的氢键状态与液态水的氢键状态明显不同:OH基团有两种彼此不同的拉伸模式,这是由于空气-水(疏水)界面和水-纤维素(亲水)界面的作用引起的。


研究者认为,这一硬化过程背后的机制可以为织物柔软剂的开发提供新的思路。


独特的“结合水”


花王公司研究小组首先针对棉制品表面的硬化过程提出了一种理论模型:在自然干燥过程中,棉纤维会发生由水的表面张力(0.078 N/m)引起的纤维之间的毛细作用力,导致单纤维之间的距离随着干燥过程中水分的减少而趋于最小。他们认为在棉制品表面存在一种不是纤维素的粘性物质——粘性结合水,从而引起毛细管粘附现象。在这一过程中,液体夹在固体表面之间会导致其粘附。因此,他们怀疑这种由表面结合水导致的纤维交联机制在调节棉制品的硬度中起了重要作用。


image.png

棉制品表面上的结合水通过毛细管粘附力使单根纤维交联。图片来源:J.Phys.Chem.C 2020,124,7,4196-4201


尽管花王公司的研究人员提出了结合水参与棉制品表面硬化过程的模型,但是到目前为止尚未直接观察到结合水的存在。为了解决这个难题,北海道大学的村田健一郎(Ken-ichiro Murata)研究小组也加入了这项研究。


他们采用了原子力显微镜(AFM)和基于原子力显微镜的红外光谱(AFM-IR)的特殊分析技术,在分子水平上直接观察棉制品表面结合水的行为。在实验中,他们观察到天然干燥的棉制品表面的AFM-IR光谱显示两个峰值,证明了结合水的存在。另一方面,完全除去棉制品表面上的水分后未观察到峰。北海道大学的村田健一郎教授说:“实验表明,结合水在棉制品表面上有助于某些动态特性,例如毛细管粘附介导的刚度。”


氢键的两种结合状态


此外,在研究结合水的过程中,他们还有一个意外的发现:结合水的光谱不同于液态水和其他水相的光谱。事实上,结合水中OH基团的两种拉伸模式明显不同,与液态水的光谱呈宽梯形相反,这表明结合水的氢键状态受与纤维素表面相互作用的影响。


两个峰的光谱表明结合水分别在空气-水界面和水-棉界面处呈现出两种不同的氢键状态,一类是棉纤维-水界面上结合水上的OH基团与纤维素上羟基的结合(较高的波数侧),一类是水-空气界面上由于疏水作用水分子之间形成牢固的氢键(较低的波数侧)。


同时作者也指出,为了更加有说服力地支持他们的对结氢键特殊形式的推断,未来仍需要进行基于水-纤维素界面进行振动模式的数值模拟分析。


来自花王公司研发团队的井垣隆子(Takako Igarashi)补充说:“之前,普遍认为织物柔软剂可减少棉纤维之间的摩擦。但是,我们的结果表明结合水参与了棉制品的硬化过程,为织物柔软剂的工作原理提供了新的见解,并可以帮助我们开发出更好的试剂、配方和系统。”


论文信息:

Takako, I., Masato, H., Koichi, N. et al. Direct Observation of Bound Water on Cotton Surfaces by Atomic Force Microscopy and Atomic Force Microscopy–Infrared Spectroscopy. J. Phys. Chem. C 124(7), 4196-4201 (2020). https://doi.org/ 10.1021/acs.jpcc.0c00423


参考来源:

https://www.eurekalert.org/pub_releases/2020-03/hu-wdy032620.php